INHIBITION OF ENERGIZATION OF SALMONELLA TYPHIMURIUM MEMBRANE BY ZINC IONS

A.P. SINGH and P.D. BRAGG

Department of Biochemistry, University of British Columbia, Vancouver, B.C., Canada

Received 19 December 1973

1. Introduction

 ${\rm Zn}^{2+}$ inhibits the transport of sugars and amino acids into intact cells of *Escherichia coli* [1] and *Pseudomonas aeruginosa* [2]. Sulfhydryl groups, the likely targets for inhibition by ${\rm Zn}^{2+}$, have been reported to be components of the transport system for these substances in bacterial membranes [3]. Thus, it is not possible to determine if ${\rm Zn}^{2+}$ inhibits at the level of the transport components or whether it prevents energization of the membrane.

To answer this question we have studied the effect of Zn²⁺ on the energy-dependent transhydrogenation of NADP⁺ by NADH in membrane particles of Salmonella typhimurium. This system can be driven by either NADH or ATP [4]. The energized state so formed is probably that which is also involved in the active transport of sugars and amino acids [5]. Effects of inhibitors directly on the transhydrogenase enzyme itself, as opposed to the energization process, can be independently measured by studying their action on the energy-independent transhydrogenase reaction [6,7].

This note reports evidence that Zn²⁺ inhibits oxidation of various substrates and interferes with the energization process.

2. Experimental

Salmonella typhimurium, LT2 was grown in a glucose—salts minimal medium containing 12 μ M ferric citrate at 37°C with aeration. Bacteria were harvested

in the late log phase of growth and membrane particles were prepared as previously described for $E.\ coli$ [8]. The assays of energy-dependent, energy-independent transhydrogenase, and succinate oxidase were carried out by the methods of Bragg et al. [8], Kaplan [9], and Luzikov and Romashina [10], respectively. NADH oxidase was measured spectrophotometrically in a reaction volume of 1.0 ml containing 50 mM Tris—HCL buffer, pH 7.5, 5 mM MgCl₂, 0.15 mM NADH and 100 μ g membrane particle protein. The reaction was monitored at 37°C with a Coleman 124 spectrophotometer. D-Lactate and succinate dehydrogenase activities were assayed by the method of Rogers et al. [11]. Ca²⁺-activated ATPase was measured as previously described [12].

3. Results and discussion

The effect of Zn²⁺ on the energy-dependent (aerobic-driven and ATP-driven) and energy-independent transhydrogenases, and succinate and NADH oxidase activities in membrane particles of *S. typhimurium*, is shown in fig. 1. Zn²⁺ had little effect on the energy-independent transhydrogenase but it effectively inhibited both energy-dependent transhydrogenase reactions (fig. 1A,B). The concentrations of Zn²⁺ used had no effect on the NADH generating system. The aerobic-driven reaction was more sensitive to the inhibitor than the ATP-driven transhydrogenase. The effect of the Zn²⁺ on the former reaction could be correlated with an inhibitory action on NADH oxidation (fig. 1D). Inhibition of NADH oxidase would

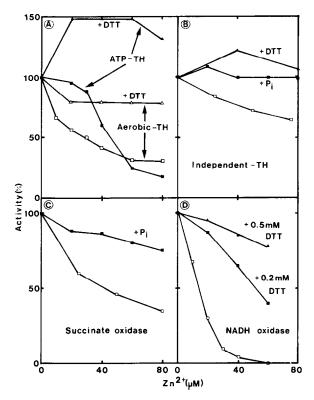


Fig. 1. Effect of Zn^{2+} on aerobic- and ATP-driven transhydrogenase (A), energy-independent transhydrogenase (B), succinate oxidase (C) and NADH oxidase (D) activities of membrane particles of S. typhimurium. Membrane particles (A, 1.6 mg; B, 0.2 mg; C, 0.1 mg; D, 0.4 mg protein) were preincubated at 37° C for 5 min with the indicated concentration of Zn^{2+} before the reaction was started. In experiments with dithiothreitol (DTT) this compound was added 1 min prior to the addition of Zn^{2+} . The concentrations of DDT in A and B was 0.5 mM, and that of phosphate buffer, pH 7.5, (P₁) in B and C was 50 mM. The specific activities of aerobic-driven, ATP-driven, and energy-independent transhydrogenases, succinate, and NADH oxidases were 7.2, 7.2, 233, 100 and 232 nmoles/min/mg protein, respectively.

prevent the formation of the energized state. Succinate oxidase also was inhibited by Zn^{2+} (fig. 1C) but this reaction was less sensitive than NADH oxidase. Although the results are not shown here, 0.2 mM Zn^{2+} inhibited D-lactate and succinate dehydrogenase activities by 29% and 60%, respectively. The lack of a suitable assay method prevented measurement of the effect of the inhibitor on NADH dehydrogenase. These results are consistent with the site of action of Zn^{2+} between substrate and cytochrome b_1 proposed

for the respiratory chain of the related organism, E. Coli [13].

The sensitivity of the ATP-driven transhydrogenase, and the relative resistance of the energyindependent reaction to inhibition by Zn²⁺, (fig. 1A.B) suggests that these metal ions must be acting either directly on the energized state or interfering with its formation from ATP. Since Zn²⁺, up to a concentration of 1 mM, had no effect on the Ca²⁺, Mg²⁺-activated ATPase, the enzyme involved in the ATP-driven transhydrogenase [14], it seems likely that Zn2+ must be acting at the level of the energized state. In mitochondria, sulfhydryl groups have been implicated at this level [15]. The ability of dithiothreitol to reverse the inhibitory effects of Zn2+ on the transhydrogenase and NADH oxidase activities supports the hypothesis that Zn^{2+} acts on essential sulfhydryl groups.

Phosphate was able to prevent the inhibitory effect of Zn^{2+} on energy-independent transhydrogenase and succinate oxidase activities (fig. 1B,C). Zn^{2+} can form complexes with phosphate, AMP, ADP and ATP [16]. It seems likely that the relative resistance of the ATP-driven transhydrogenase reaction to low concentrations of Zn^{2+} when compared to the aerobic-driven reaction might be due to the removal of these metal ions as a complex with ATP.

The above results indicate that Zn^{2+} has effects on both the respiratory chain and the energized state. Thus, the observed inhibition of amino acid and sugar transport by these ions [1,2] is not necessarily due to inhibition at the level of the transport components themselves.

Acknowledgments

This work was supported by a grant from the Medical Research Council of Canada.

References

- [1] Anraku, Y. (1968) J. Biol. Chem. 243, 3128-3135.
- [2] Eagon, R.G. and Asbell, M.A. (1969) J. Bacteriol. 97, 812-819.
- [3] Kaback, H.R. and Hong, J.S. (1973) CRC Critical Rev. Microbiol. 2, 333-376.

- [4] Singh, A.P. and Bragg, P.D. (1973) Proc. Can. Fed. Biol. Soc. 16, 141.
- [5] Parnes, J.R. and Boos, W. (1973) J. Biol. Chem. 4429– 4435.
- [6] Kawasaki, T., Satoh, K. and Kaplan, N.O. (1964) Biochem. Biophys. Res. Commun. 17, 648-654.
- [7] Lee, C.P., Simard-Duquesne, N., Ernster, L. and Hober-man, H.D. (1965) Biochim. Biophys. Acta 105, 397-409.
- [8] Bragg, P.D., Davies, P.L. and Hou, C. (1972) Biochem. Biophys. Res. Commun. 47, 1248-1255.
- [9] Kaplan, N.O. (1967) Methods in Enzymology 10, 317–322.
- [10] Luzikov, V.N. and Romashina, L.V. (1972) Biochim. Biophys. Acta 267, 37-47.

- [11] Rogers, H.J., Reaveley, D.A. and Burdett, I.D.J. (1968) Protides Biol. Fluids 15, 303-313.
- [12] Davies, P.L. and Bragg, P.D. (1972) Biochim. Biophys. Acta 266, 273-284.
- [13] Kasahara, M. and Anraku, Y. (1972) J. Biochem. 72, 777-781.
- [14] Bragg, P.D. and Hou, C. (1972) FEBS Letters 28, 309-312
- [15] Sanadi, D.R., Lam, K.W. and Kurup, C.K.R. (1968) Proc. Natl. Acad. Sci. U.S. 61, 277-283.
- [16] Sigel, H., Becker, K. and McCormick, D.B. (1967) Biochim. Biophys. Acta 148, 655-664.